
FUNCTIONS

CS1103 Workshop 5

Functions, Built-in functions, Writing our own functions, Functions with parameters, Call-back functions

FUNCTIONS
What are they?

Actually, we’ve been USING
(or ‘calling’) functions all along.

p5.js functions:
• rect()

• fill()

• loadFont()

One way to think of
a function is simply
as a command

FUNCTIONS
What are they?

We’ve also been adding our own code to
functions called automatically by p5.js
• setup() { … }

• draw() { … }

• preload() { … }

func·tion /fuhnk-shuhn/
n. a function is just a block of code, which
we give a name, so that it may be called
when needed

• Programs written with functions are more
structure, elegant and easier to read.

• Functions are reusable, specifically, a
function is written once and can be invoked
whenever necessary.

P5.JS HAS HUNDREDS OF FUNCTIONS THAT ARE BUILT- IN

We can also create our own!

Built-in
Functions

Example: Draw house and tree at random locations

function setup() {
createCanvas(600, 250);
background(0);
noStroke();

//draw a house at a random location
var xh = random(width);
fill(255, 255, 0);
triangle(xh, 80, xh - 20, 110, xh + 20, 110);
rect(xh - 20, 112, 40, 40);

//draw a tree at a random location
var xt = random(width);
fill(0, 255, 0);
ellipse(xt, 80, 20, 20);
ellipse(xt - 10, 90, 30, 30);
ellipse(xt + 10, 90, 30, 30);
fill(200, 150, 0);
rect(xt - 5, 100, 10, 50);

}

Like before, we can put drawing code in setup.

Example: Draw house and tree at random locations

function setup() {
createCanvas(600, 250);
background(0);
noStroke();

drawHouse(); drawHouse(); drawHouse();
drawTree(); drawTree(); drawTree();

}

function drawHouse() {
var x = random(width);
fill(255, 255, 0);
triangle(x, 80, x - 20, 110, x + 20, 110);
rect(x - 20, 112, 40, 40);

}

function drawTree() {
var x = random(width);
fill(0, 255, 0);
ellipse(x, 80, 20, 20);
ellipse(x - 10, 90, 30, 30);
ellipse(x + 10, 90, 30, 30);
fill(200, 150, 0);
rect(x - 5, 100, 10, 50);

}

But, if we put the code in drawHouse() and drawTree()
Then we can call from setup() multiple times!

We say:
we create our own functions:
drawHouse and drawTree.

To conclude:
• We have put some lines of code to draw a house.

• We think of these lines as to do one single task : to draw a house

• We give this command a name: let’s call it drawHouse()

• And write its definition as a function: function drawHouse() {
.. your code ..

}

• Similar for drawTree() function drawTree() {
.. your code ..

}

• Discussion: What are the advantages of writing functions?

About () :
• Currently, in drawHouse(), the brackets () is empty.

Even so, the () are needed.

• This is similar to noFill(), noStroke() etc..

• xxx() or xxx(..) means a function

Without (), it is not a function.

• Examples:
These are NOT functions: mouseX, width, frameCount
These are functions: fill(r,g,b), noFill(), random(v1, v2)

function drawHouse() {

.. your code ..

}

Functions with Parameters

• Some functions will accept parameters,
for example, rect() requires parameters to
specify the location, the width, and height.

• Some functions require no parameter,
for example, noStroke(), noFill()

We can add parameters in our functions!

createCanvas(600, 250);
background(0);
noStroke();

//draw a house
fill(255, 255, 0);
triangle(100, 80, 80, 110, 120, 110);
rect(80, 112, 40, 40);

Example: Draw house and tree at given locations

function setup() {
createCanvas(600, 250);
background(0);
noStroke();

var xh = random(width);
drawHouse(xh);
drawTree(xh-50);
drawTree(xh-100);

}

function drawHouse(x) {
var x = random(width);
fill(255, 255, 0);
triangle(x, 80, x - 20, 110, x + 20, 110);
rect(x - 20, 112, 40, 40);

}

function drawTree(x) {
var x = random(width);
fill(0, 255, 0);
ellipse(x, 80, 20, 20);
ellipse(x - 10, 90, 30, 30);
ellipse(x + 10, 90, 30, 30);
fill(200, 150, 0);
rect(x - 5, 100, 10, 50);

}

Put the code in drawHouse() and drawTree()
Then call them with parameter values for x

Draw two trees to the left of the house

Example: Draw house and tree at calculated locations

function setup() {
createCanvas(600, 300);
background(0);
noStroke();

for (var i = 0; i < 3; i++) {
var xh = 150 + i * 200;
drawHouse(xh);
drawTree(xh - 50);
drawTree(xh - 100);

}
}

function drawHouse(x) {
fill(255, 255, 0);
triangle(x, 80, x - 20, 110, x + 20, 110);
rect(x - 20, 112, 40, 40);

}

function drawTree(x) {
fill(0, 255, 0);
ellipse(x, 80, 20, 20);
ellipse(x - 10, 90, 30, 30);
ellipse(x + 10, 90, 30, 30);
fill(200, 150, 0);
rect(x - 5, 100, 10, 50);

}

Put the code in drawHouse() and drawTree()
Then call them with parameter values for x

Repeat 3 times!!
Draw two trees and a house

Example: Draw house and tree at calculated locations (x, y)
function setup() {

createCanvas(600, 300);
background(0);
noStroke();

for (var i = 0; i < 3; i++) {
var xh = 150 + i * 200;
var yh = 80 + i * 25;
drawHouse(xh, yh);
drawTree(xh - 50, yh - 10);
drawTree(xh - 100, yh);

}
}

function drawHouse(x, y) {
fill(255, 255, 0);
triangle(x, y, x - 20, y + 30, x + 20, y + 30);
rect(x - 20, y + 32, 40, 40);

}

function drawTree(x, y) {
fill(0, 255, 0);
ellipse(x, y, 20, 20);
ellipse(x - 10, y + 10, 30, 30);
ellipse(x + 10, y + 10, 30, 30);
fill(200, 150, 0);
rect(x - 5, y + 20, 10, 50);

}

Put the code in drawHouse() and drawTree()
Then call them with parameter values for x and y

Repeat 3 times!!
Draw two trees and a house

Job 1:
Given the function drawZoog() with
5 parameters, write a program that
draws the picture below.

// x and y specify location
// w and h specify width and height of zoog
// eyeSize specify the size of zoog's eyes
function drawZoog(x, y, w, h, eyeSize) {

// Draw Zoog's body
stroke(0);
fill(175);
rectMode(CENTER);
rect(x, y, w/6, h*2);

// Draw Zoog's head
fill(255);
ellipse(x, y-h/2, w, h);

// Draw Zoog's eyes
fill(0);
ellipse(x-w/3, y-h/2, eyeSize, eyeSize*2);
ellipse(x+w/3, y-h/2, eyeSize, eyeSize*2);

// Draw Zoog's legs
stroke(0);
line(x-w/12, y+h, x-w/4, y+h+10);
line(x+w/12, y+h, x+w/4, y+h+10);

}

Another example: Division of labor – painting and moving

function draw() {
paint(); //painting object as one task
move(); //moving object location as another task

}

function paint() {
.. Code to write ..

}

function move() {
.. Code to write ..

}

Example: Division of labor – painting / moving

var circleX = 0;
var circleY = 100;

function setup() {
createCanvas(200, 200);

}

function draw() {

//paint
background(0);
stroke(175);
strokeWeight(5);
fill(0);

ellipse(circleX, circleY, 50, 50);
.. Other painting ..

//move
if (circleX > width) {

circleX = 0;
}

circleX = circleX + 1;
}

Original program:
Move ball to the right, then back again

New program structure:
Divide to painting + moving tasks in 2 functions

var circleX = 0;
var circleY = 100;

function setup() {
createCanvas(200, 200);

}

function draw() {
paint();
move();

}

function paint() {
background(0);
stroke(175);
strokeWeight(5);
fill(0);

ellipse(circleX, circleY, 50, 50);
.. Other painting ..

}

function move() {
circleX = circleX + 1;
if (circleX > width) {
circleX = 0;

}
}

What are the benefits
of writing the tasks in 2
functions?

[Answer]
There are a lot:
e.g. to revise one task,
we don’t want to cause
trouble to others;
debugging becomes easy;
the draw function can
change to call other move
functions (moveSlow(),
moveIrregular(), ..)

Example: Division of labor – painting / moving / bouncing

var circleX = 25;
var circleY = 100;
var direction = 1;

function setup() {
createCanvas(200, 200);

}

function draw() {

//paint
background(0);
stroke(175);
strokeWeight(5);
fill(0);

ellipse(circleX, circleY, 50, 50);
.. Other painting ..

//move
circleX = circleX + direction;

//bounce
if (circleX > width - 25 || circle < 25) {
direction = direction * -1;

}
}

Given program:
Bouncing the ball left and right

Job 2: New program structure
Divide tasks in 3 functions: paint(), move(), bounce()

var circleX = 25;
var circleY = 100;
var direction = 1;

function setup() {
createCanvas(200, 200);

}

Your code

Callback Functions
What are they?

Callback function is also a kind of built-in function. However, we
do not need to explicitly invoke a callback function. Precisely, each
callback function corresponds to an event (e.g., mouse clicked)
and is invoked automatically when the event happens.
Hence, callback function is also referred to as "event handler".
Callback function is particularly useful for program with user
interaction.

Callback Functions
What are they?

Examples of callback functions are:

mousePressed(): Invoke every time when a mouse button is pressed.

mouseReleased(): Invoke every time when a mouse button is released.

mouseDragged(): Invoke every time when a mouse button is dragged.

keyPressed(): Invoke every time when a key is pressed.

Example: Small rectangle is drawn every time a mouse button is clicked
Canvas is erased when a key is pressed

function setup() {
createCanvas(400, 400);
background(225);

}

// Whenever a user clicks the mouse, the code inside mousePressed() is executed.
function mousePressed() {

stroke(0);
fill(200, 0, random(255));
rectMode(CENTER);
rect(mouseX, mouseY, 16, 16);

}

// Whenever a user presses a key, the code inside keyPressed() is executed.
function keyPressed() {

background(225);
}

Example 2:
Draw Zoog’s eyes and
legs at the center.

Move Zoog’s body
following the mouse until
the user clicks to confirm
the placement.

var x, y, isPressed;

function setup() {
createCanvas(240, 360);
ellipseMode(CENTER);
rectMode(CENTER);

isPressed = false;
}

function draw() {
background(225);

if (isPressed == false) {
x = mouseX;
y = mouseY;

}

drawEyes();
drawLegs();

placeLego(); //draw body and head (mouse location)
drawEyes(); //redraw eyes on lego

textSize(10); noStroke(); fill(255,0,0);
text("x: "+x+", y: "+y+", isPressed: "+isPressed, 5, 355);

}

Functions: drawEyes, drawLegs, placeLego

function mousePressed() {
isPressed = true;

}

function drawEyes () {

fill(0);
ellipse(101, 160, 16, 32);
ellipse(139, 160, 16, 32);

}

function drawLegs() {

stroke(0);
line(110, 240, 100, 250);
line(130, 240, 140, 250);

}

function placeLego() {

// Draw body and head (mouse location)

stroke(0);
fill(175);
rect(x, y, 20, 100);

stroke(0);
fill(255);
ellipse(x, y - 30, 60, 60);

}

Job 3:
Modify the previous program so that the body of Zoog is moved only
when the mouse button is held down and dragging over the canvas.

Assignment of this lesson:
Create a program according to the requirement below.
Submit it on Canvas.
Due: Please check the deadline on Canvas.

Animation: https://courses.cs.cityu.edu.hk/cs1103/public/Workshop05_AsgAnimation/

You are given a function for drawing car of different size at different
location. Write a program, using the drawCar() function, such that
a train of 3 cars will move. Furthermore, the size of cars is double
when left mouse button is pressed, and reduced by half when the
right mouse button is pressed. Interact with the animation below!

1. Achieve required effect as given in the animation. (4 marks)

Hint: For checking left/right mouse buttons, use the system
variable mouseButton (http://p5js.org/reference/)

Note: Do not change the given drawCar() function

2. Implement creative features through writing and calling functions
with parameters. (1 mark)

https://courses.cs.cityu.edu.hk/cs1103/public/Workshop05_AsgAnimation/

	Functions�
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

