
MORE ON FUNCTIONS

CS1103 Workshop 6

Function with return value

FUNCTIONS
With return value

A function not only accepts input(s), but
may also return value or result.

For example, the random function
returns a random value when the function
is invoked.

function setup() {

var r = random(100, 200);

}

function random(min, max) {

return ♣♥♠♦;
}

steps to get the result

p5.js already provides the
random function.
It returns a random value to
the caller.

FUNCTIONS with RETURN VALUE
Example 1: The random() by p5.js

function setup() {

var result = sqrt(1103);

}

function sqrt(k) {

return ♣♥♠♦♣♥♠;
}

steps to get the result

p5.js already provides the
sqrt function.
It returns the square root of
a value to the caller.

Calculate the
square root of

a number

FUNCTIONS with RETURN VALUE
Example 2: The sqrt() by p5.js

function setup() {
createCanvas(200, 150);
background(225);
textAlign(CENTER, CENTER);
textSize(30);
fill(0);

var result = sqrt(1103);

text(result.toFixed(2), width / 2, height / 2);

}

The complete program:

[Note]
result.toFixed(2) gives the value of result in 2 decimal points

FUNCTIONS with RETURN VALUE
Example 2: The sqrt() by p5.js

function setup() {

var result = our_function(..);

}

function our_function(..) {

return ♣♥♠♦;
}

steps to get the result

We can also write our own functions that:
returns a value to the caller.

FUNCTIONS with RETURN VALUE

To get the distance between (x1, y1) and (x2, y2),
we can write the distance function that
returns the calculation result.

3

4
32+42 = 5

Point1: (0,4)

Point2: (3,0)

(x1-x2)2 + (y1-y2)2

Horizontal
distance

Vertical
distance

function distance(x1, y1, x2, y2) {
var dx = x1 - x2;
var dy = y1 - y2;
var d = sqrt(dx * dx + dy * dy);
return d;

}

This is called a return statement.
It returns the value d to the caller [and stops running the function].

FUNCTIONS with RETURN VALUE
Example 3: The distance() function written by ourselves

FUNCTIONS with RETURN VALUE

function setup() {

var result = distance(0,4,3,0);

}

function distance(x1, y1, x2, y2) {
var dx = x1 - x2;
var dy = y1 - y2;
var d = sqrt(dx * dx + dy * dy);
return d;

}

Here we create our own function, distance:
It accepts 4 input values into parameters x1,
y1, x2, y2;
Then carries out calculation step by step.
Temporary variables dx, dy, d are used to
store intermediate values.
E.g., dx will get -3, dy will get 4, d will get 5.
Finally return the resultant value to the caller.

The setup function, as the caller, uses the
result variable to hold the returned value.

Example 3: The distance() function written by ourselves

function setup() {
createCanvas(200, 200); background(225);
textAlign(CENTER, CENTER); textSize(20);
noFill(); stroke(0);

var xPoint1 = random(20, 150);
var yPoint1 = random(20, 150);
var xPoint2 = random(20, 150);
var yPoint2 = random(20, 150);

strokeWeight(5);
point(xPoint1, yPoint1);
point(xPoint2, yPoint2);
strokeWeight(1);
line(xPoint1, yPoint1, xPoint2, yPoint2);

var result = distance(xPoint1, yPoint1, xPoint2, yPoint2);
noStroke();
fill(255, 0, 0);
text(result.toFixed(2), 100, 180);

}

function distance(x1, y1, x2, y2) {
var dx = x1 - x2;
var dy = y1 - y2;
var d = sqrt(dx * dx + dy * dy);
return d;

}

Example 3
A complete program that uses
the distance() function:

Note:

1. Recall: result.toFixed(2) gives
the value of result in 2 decimal points

2. Actually, p5.js already provides the
dist function, that calculates the
distance like our function does.

FUNCTIONS with RETURN VALUE

Example 4: The simple getSpeed() function

var circleX = 25;
var circleY = 100;

function setup() {
createCanvas(500, 200);

}

function draw() {
background(0,10); stroke(0); fill(175);
move(getSpeed());
ellipse(circleX, circleY, 50, 50);

}

function getSpeed() {
return frameCount / 100;

}

function move(speed) {
if (circleX > width) {
circleX = 0;

}
circleX += speed;

}

The function getSpeed() returns the value of frameCount/100.

FUNCTIONS with RETURN VALUE

Example 4: The simple getSpeed() function

function draw() {
background(0,10); stroke(0); fill(175);
move(getSpeed());
ellipse(circleX, circleY, 50, 50);

}

function getSpeed() {
return frameCount / 100;

}

The function getSpeed() returns the value of frameCount/100.

Question 1: Moving how fast?
Answer:
frameCount 1-99: <1 pixel per frame
frameCount 100-200: 1-2 pixels per frame
frameCount 200-300: 2-3 pixels per frame
…

Question 2: Can we write the same animation without
writing and using the getSpeed() function?

Answer:
Yes. move(frameCount/100); gives the same effect.
It is not a must to use the getSpeed() function.

Discussion: Any advantage of writing a getSpeed() function?

FUNCTIONS with RETURN VALUE

Example 4: The simple getSpeed() function

function draw() {
background(0,10); stroke(0); fill(175);
move(getSpeed());
ellipse(circleX, circleY, 50, 50);

}

function getSpeed() {
return frameCount / 100;

}

The function getSpeed() returns the value of frameCount/100.

Question 3:
Here when we call getSpeed(), we do not need a variable
to hold the result. Why?

Answer:
OKay, if you want, you can write it like:

var sp = getSpeed();
move(sp); //use sp’s value as the input to run the move() function.

Yet we can also simply write move(getSpeed());
that means
(1) first run getSpeed();
(2) then use its return value to provide the input speed
value for move(speed).

FUNCTIONS with RETURN VALUE

Example 4: The simple getSpeed() function

function draw() {
background(0,10); stroke(0); fill(175);
move(getSpeed());
ellipse(circleX, circleY, 50, 50);

}

function getSpeed() {
return frameCount / 100;

}

The function getSpeed() returns the value of frameCount/100.

Question 4:
When we write the getSpeed() function, we do not need a
variable to hold the result for returning. Why?

Answer:
OKay, if you want, you can write it like:

var result = frameCount/100;
return result; //return the value of result to the caller

Yet we can also simply write return frameCount/100;
that means (1) first evaluate frameCount/100; (2) then the
return statement returns the evaluated value to the caller.

FUNCTIONS with RETURN VALUE

Job 1:
Change the getSpeed() function such that
it returns the speed of 2 when the ball is at the left half of the canvas, and
It returns the speed of 10 when the ball is at the right half of the canvas.

FUNCTIONS with RETURN VALUE

Job 2:
Based on Example 5, create this animation:The canvas turns red gradually when the cursor

moves towards the center of canvas (white +).

The ellipse generally expands or shrinks while
touching the mouse cursor. The size of the
ellipse is bounded by the canvas boundaries.
You do not need to draw the black outer border.

Example 5

Job 3 [Required for assignment]

Complete the program so that

• It draws a rectangle frame,

• It paints random balls

• The balls outside / inside / cutting
the frames are colored differently
as shown in the picture.

function draw() {
background(0, 1);

noFill(); stroke(255); rect(50, 50, 200, 200);

var d, x, y; d = random(15, 25);
x = random(d/2,300-d/2); y = random(d/2,300-d/2);

stroke(255); noFill();

var ez = enteringZone(x, y, d, 50, 50, 250, 250);
if (ez == 0) {

fill(255);
} else if (..)
.. //check the code in ez and choose the fill color

ellipse(x, y, d, d);
}

//check whether a ball entering a rectangular zone
//return -1 means: not even touching
//return 0 means: entered totally
//return 1/2/3/4 means: entering at left/top/right/bottom
function enteringZone(x, y, ballSize, left, top, right, bottom) {

}

Job 4 [Required for assignment]

Complete the program
for the animation:

• A ball goes down in a
zigzag manner.

• When it falls away down
from the bottom, re-start
from the top.

• The vertical speed (yStep) is 2

• The horizontal speed (xStep) is
random(5,10) when it goes right,
random(-10, -5) when it goes left.

• Generate a new speed whenever it
bounces at the left/right margin

• Generate a random ball size at the
beginning, and when it comes back
from the top.

var x, y, xStep, yStep, ballSize;

function setup() {
createCanvas(250, 400);
background(0);
x = width/2; //width and height are available after creating canvas
xStep = random(5, 10);
y = 10; yStep = 2;
ballSize = random(30,60); //random() is available after setup() starts

}

function draw() {
background(0,5);
fill(255); ellipse(x, y, ballSize, ballSize);
x += xStep; y += yStep;

var bm = bounceAtMargin();
if (bm == 1) {

x = ballSize / 2; //adjust the ball to exactly touch the margin
xStep = random(5, 10);

} else if (...)

}

//check whether the ball is bouncing at the margins at left, top, right, bottom
//return 0 means: not bouncing; 1/2/3/4 means: bouncing at left/top/right/bottom
//Please write the function bounceAtMargin() below:

Assignment of this lesson:
Create a program according to the requirement below.
Submit it on Canvas.
Due: Please check the deadline on Canvas.

Animation: https://courses.cs.cityu.edu.hk/cs1103/public/Workshop06_AsgAnimation/

Create the animation according to the requirements below (5 marks)

Details of the basic requirements [4 marks]

1. Draw an rectangle zone inside the canvas. Bounce a ball inside the Canvas and at the edges of
the zone. The ball size is fixed to 30.

2. Count the times the ball bounces at the 4 edges of the zone and show the counts at the bottom of
the canvas. Also show the total sum of bounces at the center of the zone.

3. The vertical speed of the ball is random(5,10) or random(-10, -5) for downward or upward motions
respectively; similar for the horizontal speed. Generate a new speed whenever it hits the margins
or the edges of the zone. For example, if it hits the top edge of the zone, that means it is to
bounce upward, therefore change the vertical speed to random(-10,-5).

4. Your solution should involve writing and using functions with return value. Please refer to Job 3-4
for doing so.

Creative component [1 mark]
Implement creative features through writing and calling functions with parameters and return values.

https://courses.cs.cityu.edu.hk/cs1103/public/Workshop06_AsgAnimation/

	MORE on Functions�
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

