
MATH And SOUND

CS1103 Workshop 9

Probability, map, sin, cos, SOUND

PROBABILITY

Probability is the measure of the likeliness that an event will occur. Probability is
quantified as a number between 0 and 1. The higher the probability of an event, the
more certain we are that the event will occur.

A simple example is the toss of a (unbiased) coin. Since the two outcomes are equally
probable, the probability of "heads" equals the probability of "tails", so the probability
is 1/2 (or 50%) chance of either "heads" or "tails".

Sample
Program 1:

function setup() {
createCanvas(360, 470);
background(255);
noStroke();

}

function draw() {

// Probabilities for 3 different cases
// These need to add up to 100%!
var red_prob = 0.60; // 60% chance of red color
var green_prob = 0.10; // 10% chance of green color
var blue_prob = 0.30; // 30% chance of blue color

// Pick a random number between 0 and 1
var num = random(1);

if (num < red_prob) {
fill(255, 53, 2, 150);

} else if (num < green_prob + red_prob) {
fill(156, 255, 28, 150);

} else {
fill(10, 52, 178, 150);

}

ellipse(random(width), random(height), 32, 32);
}

Three cases:
• num is less than .6
• num is between .6 and .7
• All other cases (between .7 and 1.0)

Draw a ball of either
red, green or blue,
each with a probability.

Job 1:
Write a program so that a ball has
10% chance of moving up, a 20% of
chance moving down, and a 70%
chance of doing nothing.

By common sense, guess what will
happen to the ball eventually?

Sample Program 2:

var randomCounts = [];
var numPoints;

function setup() {
createCanvas(640, 360);
background(0);

numPoints = width / 20;

for (var x = 0; x < numPoints; x++) {
randomCounts[x] = 0;

}
}

function draw() {

// Pick a random number and increase the count
// floor() is applied to obtain the largest whole number not larger than the random number.
var index = floor(random(numPoints));
randomCounts[index]++;

// Draw a rectangle to graph results
stroke(0);
fill(255, 255, 0);
rect(index * 20, 0, 19, randomCounts[index]);

}

Suppose we repeatedly throw a dice
for 100 times and count the
occurrences of each number. Then,
we can have a histogram or
"distribution" showing the probability
that each number will occur.

Sample program 2 shows an
example of generating a histogram
of 32 numbers randomly. You will
notice that even though these
numbers are randomly generated,
each number has more or less equal
probability of generation. In other
words, the random() function is
unbiased, basically.

MAP
The map() function, which converts one range of values to another range, can be very
useful

map(theVariable, actualMin, actualMax, targetMin, targetMax)

Parameters:
theVariable : the incoming number to be converted
actualMin : the lower bound of the incoming number’s current range
actualMax : the upper bound of the incoming number’s current range
targetMin : the lower bound of the target range
targetMax : the upper bound of the target range

Return value: remapped number

MAP

createCanvas(256, 100);

var x = 0;

while (x < 256) {
stroke(x);
line(x, 0, x, height);
x++;

}

How about if canvas size is 400x100?

createCanvas(400, 100);

var x = 0;

while (x < width) {
var c = map(x, 0, width, 0, 256);
stroke(c);
line(x, 0, x, height);
x++;

}

Sample Program 3:

Given:
The canvas size is 256x100
We paint gray colors in 256 levels:

Generate 16 stripes in gradients of blue

createCanvas(256, 100);
noStroke();

var s = 0;

while (s < 16) {
var c = map(s, ___, ___, ___, ___);

fill(0, 0, c);
rect(s * 16, 0, 16, 100);

s++;
}

MAP
Job 2:

SIN AND COSINE WAVES

Trigonometry is a branch of
mathematics that studies
relationships between the sides and
angles of triangles.

Examples of trigonometry functions
are sin, cosine, tangent.

https://p5js.org/reference/

text(sin(0).toFixed(4), 10, 50);

text(sin(3.14).toFixed(4), 10, 100); //sin(180 degrees)

text(sin(3.14159).toFixed(4), 10, 150);

text(sin(3.1416).toFixed(4), 10, 200);

text(sin(1.57).toFixed(4), 10, 250); //sin(90 degrees)

text(sin(0.7854).toFixed(4), 10, 300); //sin(45 degrees)

text(PI.toFixed(8), 10, 400);

text(sin(PI).toFixed(4), 10, 500);

text(sin(TWO_PI).toFixed(4), 10, 550);

text(sin(HALF_PI).toFixed(4), 10, 600); //sin(90 degrees)

text(sin(QUARTER_PI).toFixed(4), 10, 650); //sin(45 degrees)

function setup() {
createCanvas(500, 360);
background(240);
fill(255, 0, 0);
textSize(18);
text("sin", 10, 75);
text("cos", 10, 185);

var a = 0.0;
var inc = TWO_PI / 25;

for (var i = 0; i < 50; i++) {
line(i*10, 125, i*10, 125 - sin(a)*40);
line(i*10, 250, i*10, 250 - cos(a)*40);
a = a + inc;

}
}

SIN AND COSINE WAVES

TWO_PI is a constant defined in p5.js. It is about 2 x 3.1416.

Trigonometry is a branch of mathematics
that studies relationships between the
sides and angles of triangles.

Examples of trigonometry functions are
sin, cosine, tangent.

Your task:
Study and try sample program 4 to
visualize the difference between sin and
cosine waves.

Sample Program 4:

//The first theta whose sine value is drawn as a dot on the canvas
var firstTheta = 0.0;

function setup() {
createCanvas(480, 270);
noStroke();
fill(0, 0, 255);

}

function draw() {
background(230);

// Increment firstTheta for every frame
// Todo: try other values of "angular velocity"
firstTheta += 0.02;

var theta = firstTheta;

// a for-loop draws all points along a sine wave (scaled to canvas size).
for (var x = 0; x <= width; x += 10) {

// Calculate y using the sine function
var y = map(sin(theta), -1, 1, 8, height-8);
ellipse(x, y, 16, 16);
theta += 0.1;

}
}

Trigonometric function is useful in
simulating smooth motion.

Sample program 5 uses sin to simulate the
movement of snake.

Sample Program 5:

var theta = 0.0;

function setup() {
createCanvas(480, 270);
fill(255, 0, 0);
stroke(0);

}

function draw() {
background(240);

// The output of the sin() function oscillates
// smoothly between -1 and 1. We map it
// to an x coordinate between 16 and width-16
var x = map(sin(theta), -1, 1, 16, width - 16);

// With each cycle, increment theta
theta += 0.05;

// Draw the ellipse at the value produced by sine
line(width / 2, 0, x, height / 2);
ellipse(x, height / 2, 32, 32);

}

This example swings a ball using sin
function. The movement is smooth and
natural, basically.

Sample Program 6:

Modify sample program 6 for the animations of bouncing ping pong ball.Job 3:

(a) The ping pong ball bounces back when hitting the ground, and drops when reaching certain height. Using sin
wave, you should see that the ball moves more naturally.
[Approach: Map the sin values of -1 to +1 to vertical positions between top and bottom]

(b) The ping pong ball rises and drops slower at high positions, then hits and bounces the ground quickly.
[Approach: Using theta from 0 to PI only, map the sin values of 0 to +1 to vertical positions between bottom and top]

(c) The speed of the ball decays and the ball eventually stops. Hint: initialize a path-height and reduce it gradually.

SOUND IN P5.JS

p5.sound is an additional library in p5.js

That allows us to:

• play/loop background sounds

• trigger sounds on events

• analyze sound in real-time

etc..

https://p5js.org/reference/#/libraries/p5.sound

https://p5js.org/reference/#/libraries/p5.sound

SOUND IN P5.JS

The sound commands:
sound.play();

• play the sound once

sound.loop();

• play the sound repeatedly

var sound = loadSound(filepath);

• loads the sound file

• returns a sound object

• Similar to loadImage

only works locally in FireFox(10.4 and above)

Sample Program 7:

<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.5.14/p5.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.5.14/addons/p5.sound.js"></script>

<script>

var sound;

function preload() {

sound = loadSound("Canon5s.mp3");
}

function setup() {

createCanvas(200, 200);

background(200);

textAlign(CENTER,CENTER);

text("Click to play", width/2,height/2);

}

function mousePressed() {

sound.play();
}

</script>

This program loads
a sound track from a
sound file. It plays
the sound track
when the mouse
button is pressed.

If we change this to
sound.loop();
The sound track will
repeat playing

Sample Program 8:

var sound;

function preload() {
sound = loadSound("Canon5s.mp3");

}

function setup() {
createCanvas(200, 200);
textAlign(CENTER, CENTER);

}

function draw() {
background(200);
if (sound.isPlaying()) {

text("Song is playing. Click to stop.", width / 2, height / 2);
} else {
text("Click to play", width / 2, height / 2);

}
}

function mousePressed() {
if (sound.isPlaying()) {

sound.stop();
} else {
sound.play();

}
}

More functions:

isPlaying()
• Return true if the

sound is currently
playing; otherwise
return false.

stop()
• Stop the playing

sound.

Job 4a:

• Create an array of sound files
• Loop over each to load them
• Select a random sound to loop
• Click mouse to select a new one to loop

var files = ["Sheep.mp3", "Canon5s.mp3", "DeerHunter.mp3", "Popeye.mp3"];
var sound = [];
var iCurrent = 0; //The index of the sound that is playing

function preload() {
//Load the sounds in a loop

}

function setup() {
createCanvas(300, 200);
textAlign(CENTER, CENTER);

//Pick a random sound and loop it

}

function draw() {
background(200);
//Display the file name of the current sound
text("Currently playing: " , width / 2, height / 2 - 15);
text("Click to change.", width / 2, height / 2 + 15);

}

function mousePressed() {
//Stop the current sound

//Pick a random sound and loop it

}

SOUND IN P5.JS

Analyzing sound
am.setInput(sound);

• link up with a sound object

am.getLevel();

• get the amplitude (0 to 1.0)

var am = new p5.Amplitude();

• p5.Sound allows us to analyze sound in real-time

• We create an amplitude object to get the

amplitude ~volume of the sound at each moment.

• We can sync motion to the beat…

Sample Program 9:

var sound;

var am;

function preload() {

sound = loadSound("Popeye.mp3");

}

function setup() {

createCanvas(200, 200);

textAlign(CENTER, CENTER);

am = new p5.Amplitude();
am.setInput(sound);

sound.play();

}

function draw() {

background(235,50);

fill(255,0,0);

noStroke();

var diameter = map(am.getLevel(), 0, 1, 0, width);
ellipse(100, 100, diameter, diameter);

}

This program
displays a ellipse of
changing size to
reflect the beat of
the sound.

Job 4b:

Modify your program of Job 4a so that the beat of the playing sound is shown.

Assignment of this lesson:
Create a program according to the requirement below.
Submit it on Canvas.
Due: Please check the deadline on Canvas.

Animation: https://courses.cs.cityu.edu.hk/cs1103/public/Workshop09_Animations

Create the program according to the requirements below (5 marks)

Basic requirements – Please implement the program as shown in the animation [3 marks]

Details:

1. Extend your program of Job4b to list the names of the sound files.

2. Play the first sound initially.

3. Change to the next sound when the mouse button is pressed.
In case the current one is the last sound in the list, go back to play the first sound.

4. Illustrate the sound that is currently playing
(In the given animation, a green triangle is painted next to the sound file name.)

5. Analyze the amplitude level of the playing sound and animate according to the beat.
(In the given animation, a vertical bar of changing size is shown.)

Creative component [2 mark]
Implement creative features for point 4 and 5 of the above.

Note: You may use your own sound files. But the total size of your submission must be under 10 MB.

https://courses.cs.cityu.edu.hk/cs1103/public/Workshop09_Animations

	���Math And sound�
	Probability
	Slide Number 3
	Slide Number 4
	Slide Number 5
	MAP
	MAP
	MAP
	SIN and cosine WAVEs
	SIN and cosine WAVEs
	Slide Number 11
	Slide Number 12
	Slide Number 13
	SOUND in p5.js
	SOUND in p5.js
	Slide Number 16
	Slide Number 17
	Slide Number 18
	SOUND in p5.js
	Slide Number 20
	Slide Number 21
	Slide Number 22

